Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(8): e29385, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38665592

RESUMEN

This study aimed at analysing the effects of coconut (Cocos nucifera L.) kernel extract (CKE) on oxidative stress, C-MYC proto-oncogene, and tumour formation in a skin cancer model. Tumorigenesis was induced by dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA). In vitro antioxidant activity of CKE was assessed using 2, 2-diphenyl-1-picrylhydrazyl (DPPH), hydrogen peroxide (H2O2), total phenolic and flavonoid content assays. CKE showed a higher antioxidant activity then ascorbic acid (*P < 0.05, ****P < 0.0001). HPLC and NMR study of the CKE revealed the presence of lauric acid (LA). Following the characterization of CKE, mice were randomly assigned to receive DMBA/TPA Induction and CKE treatment at different doses (50, 100, and 200 mg/kg) of body weight. LA 100 mg/kg of body weight used as standard. Significantly, the CKE200 and control groups' mice did not develop tumors; however, the CKE100 and CKE50 treated groups did develop tumors less frequently than the DMBA/TPA-treated mice. Histopathological analysis revealed that the epidermal layer in DMBA-induced mice was thicker and had squamous pearls along with a hyperplasia/dysplasia lesion, indicating skin squamous cell carcinoma (SCC), whereas the epidermal layers in CKE200-treated and control mice were normal. Additionally, the CKE treatment demonstrated a significant stimulatory effect on the activities of reactive oxygen species (ROS), glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD), as well as an inhibitory effect on lipid peroxidase (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001) and c-MYC protein expression (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). In conclusion, CKE prevents the growth of tumors on mouse skin by reducing oxidative stress and suppressing c-MYC overexpression brought on by DMBA/TPA induction. This makes it an effective dietary antioxidant with anti-tumor properties.

2.
J Biomol Struct Dyn ; : 1-16, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38014451

RESUMEN

Overexpression of HDAC 2 promotes cell proliferation in ovarian cancer. HDAC 2 is involved in chromatin remodeling, transcriptional repression, and the formation of condensed chromatin structures. Targeting HDAC 2 presents a promising therapeutic approach for correcting cancer-associated epigenetic abnormalities. Consequently, HDAC 2 inhibitors have evolved as an attractive class of anti-cancer agents. This work intended to investigate the anti-cancer abilities and underlying molecular mechanisms of Rhamnetin in human epithelial ovarian carcinoma cells (SKOV3), which remain largely unexplored. We employed various in vitro methods, including MTT, apoptosis study, cell cycle analysis, fluorescence microscopy imaging, and in vitro enzymatic HDAC 2 protein inhibition, to examine the chemotherapeutic sensitivity of Rhamnetin in SKOV3 cells. Additionally, we conducted in silico studies using molecular docking, MD simulation, MM-GBSA, DFT, and pharmacokinetic analysis to investigate the binding interaction mechanism within Rhamnetin and HDAC 2, alongside the compound's prospective as a lead candidate. The in vitro assay confirmed the cytotoxic effects of Rhamnetin on SKOV3 cells, through its inhibition of HDAC 2 activity. Rhamnetin, a nutraceutical flavonoid, halted at the G1 phase of the cell cycle and triggered apoptosis in SKOV3 cells. Furthermore, computational studies provided additional evidence of its stable binding to the HDAC 2 protein's binding site cavity. Based on our findings, we conclude that Rhamnetin effectively promotes apoptosis and mitigates the proliferation of SKOV3 cells through HDAC 2 inhibition. These results highlight Rhamnetin as a potential lead compound, opening a new therapeutic strategy for human epithelial ovarian cancer.Communicated by Ramaswamy H. Sarma.

3.
Artículo en Inglés | MEDLINE | ID: mdl-37776441

RESUMEN

The upregulation of HDAC1 facilitate the induction of epigenetic repression of genes responsible for suppressing tumourigenesis, thereby triggering the development of cancer. HDAC1 inhibitors have thus emerged as possible therapeutic approaches against a variety of human malignancies, as they can inhibit the activity of certain HDACs, repair the overexpression of tumour suppressor genes, and induce cell differentiation, cell cycle arrest, and apoptosis. In this study, among 810 virtually screened compounds, Pinocembrin (PHUB000396) had a significant binding affinity (-7.99 kcal/mol). In molecular dynamics simulation (MD) studies for 200 ns time scale, the compound Pinocembrin effectively undergoes conformational optimization, thereby enabling its accommodation within the active site of the receptor. This outcome serves as a rational for the observed binding affinity. The optimal binding free energy calculations using the Molecular Mechanics Generalized Born Surface Area (MM-GBSA) (-35.86 ± 7.52 kcal/mol) showed the significant role of van der Waals forces and Coulomb interactions in the stability of the respective complex. The pharmacokinetic study showed its potential as a lead compound. The in-silico cytotoxicity prediction also confirmed its potential as an active anticancer phytocompound in lung and brain cancer. Therefore, it can be predicted that Pinocembrin could be a useful bioactive compound as an HDAC1 inhibitor and could be used in developing epigenetic therapy in cancer such as brain cancer and lung cancer to regulate gene expression.

4.
Environ Sci Pollut Res Int ; 30(3): 6170-6191, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35994146

RESUMEN

Glioblastoma multiforme, a rare traumatic brain disorder, is at the research climax for its uncontrolled growth leading to a catastrophic outcome. Throwing light on the target-based virtual screening of drugs using natural phytocompounds is a striking cornerstone in glioblastoma-based drug discovery, accelerating with leaps and bounds. This project aims to develop promising lead compounds against glioblastoma brain cancer using OliveNet™, an open-source database. In this pursuit, our rationale for selecting molecules was based on their capability to pass through the blood-brain barrier. Out of 51 derivative molecules from flavonoids and polyphenols, 17 molecules were screened out bearing the best ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties, alongside fulfilling our rationale of lead selection. Two polyphenols, 3,4,5-trimethoxybenzoic acid and 4-ethyl guaiacol, have binding affinity for the antioxidant flavonoid luteolin of -5.1 and -4.3 kcal/mol, respectively. According to docking studies, the residues ASN1960, ASN1966, ASN1960, PHE1984, TYR1896, VAL1911, and LYS1966 make both polar and nonpolar interactions with 3,4,5-trimethoxybenzoic acid and 4-ethylguanidine, respectively. LD50 values of toxicity screening using TOX Pro brought to limelight the excellent safety profile of polyphenols and flavonoids. Furthermore, studies using in silico cytotoxicity prediction and molecular modelling have decisively shown that these polyphenols are likely to be effective brain cancer inhibitors and promising future lead candidates against glioblastoma multiforme.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Olea , Humanos , Simulación del Acoplamiento Molecular , Plomo , Flavonoides , Polifenoles
5.
Front Immunol ; 13: 933329, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36248858

RESUMEN

Tumor hypoxia and oxidative stress reprograms cancer stem cells (CSCs) to a highly aggressive and inflammatory phenotypic state of tumor stemness. Previously, we characterized tumor stemness phenotype in the ATP Binding Cassette Subfamily G Member 2 (ABCG2)-positive migratory side population (SPm) fraction of CSCs exposed to extreme hypoxia followed by reoxygenation. Here, we report that post-hypoxia/reoxygenation SPm+/ABCG2+ CSCs exerts defense against pathogen invasion that involves bystander apoptosis of non-infected CSCs. In an in vitro assay of cancer cell infection by Bacillus Calmette Guerin (BCG) or mutant Mycobacterium tuberculosis (Mtb) strain 18b (Mtb-m18b), the pathogens preferentially replicated intracellular to SPm+/ABCG2+ CSCs of seven cell lines of diverse cancer types including SCC-25 oral squamous cancer cell line. The conditioned media (CM) of infected CSCs exhibited direct anti-microbial activity against Mtb and BCG, suggesting niche defense against pathogen. Importantly, the CM of infected CSCs exhibited marked in vitro bystander apoptosis toward non-infected CSCs. Moreover, the CM-treated xenograft bearing mice showed 10- to 15-fold reduction (p < 0.001; n = 7) in the number of CSCs residing in the hypoxic niches. Our in vitro studies indicated that BCG-infected SPm+/ABCG2+ equivalent EPCAM+/ABCG2+ CSCs of SCC-25 cells underwent pyroptosis and released a high mobility group box protein 1 (HMGB1)/p53 death signal into the tumor microenvironment (TME). The death signal can induce a Toll-like receptor 2/4-mediated bystander apoptosis in non-infected CSCs by activating p53/MDM2 oscillation and subsequent activation of capase-3-dependent intrinsic apoptosis. Notably, SPm+/ABCG2+ but not SP cells undergoing bystander apoptosis amplified the death signal by further release of HMGB1/p53 complex into the TME. These results suggest that post-hypoxia SPm+/ABCG2+ CSCs serve a functional role as a tumor stemness defense (TSD) phenotype to protect TME against bacterial invasion. Importantly, the CM of TSD phenotype undergoing bystander apoptosis may have therapeutic uses against CSCs residing in the hypoxic niche.


Asunto(s)
Proteína HMGB1 , Nicho de Células Madre , Adenosina Trifosfato , Animales , Vacuna BCG , Línea Celular Tumoral , Medios de Cultivo Condicionados , Molécula de Adhesión Celular Epitelial , Humanos , Hipoxia , Ratones , Células Madre Neoplásicas , Receptor Toll-Like 2 , Proteína p53 Supresora de Tumor
6.
Front Nutr ; 9: 889276, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35529456

RESUMEN

The seaweed industries generate considerable amounts of waste that must be appropriately managed. This biomass from marine waste is a rich source of high-value bioactive compounds. Thus, this waste can be adequately utilized by recovering the compounds for therapeutic purposes. Histone deacetylases (HDACs) are key epigenetic regulators established as one of the most promising targets for cancer chemotherapy. In the present study, our objective is to find the HDAC 2 inhibitor. We performed top-down in silico methodologies to identify potential HDAC 2 inhibitors by screening compounds from edible seaweed waste. One hundred ninety-three (n = 193) compounds from edible seaweeds were initially screened and filtered with drug-likeness properties using SwissADME. After that, the filtered compounds were followed to further evaluate their binding potential with HDAC 2 protein by using Glide high throughput virtual screening (HTVS), standard precision (SP), extra precision (XP), and quantum polarized ligand docking (QPLD). One compound with higher negative binding energy was selected, and to validate the binding mode and stability of the complex, molecular dynamics (MD) simulations using Desmond were performed. The complex-binding free energy calculation was performed using molecular mechanics-generalized born surface area (MM-GBSA) calculation. Post-MD simulation analyses such as PCA, DCCM, and free energy landscape were also evaluated. The quantum mechanical and electronic properties of the potential bioactive compounds were assessed using the density functional theory (DFT) study. These findings support the use of marine resources like edible seaweed waste for cancer drug development by using its bioactive compounds. The obtained results encourage further in vitro and in vivo research. Our in silico findings show that the compound has a high binding affinity for the catalytic site of the HDAC 2 protein and has drug-likeness properties, and can be utilized in drug development against cancer.

7.
PLoS One ; 17(3): e0263917, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35313329

RESUMEN

Liver performs number of critical physiological functions in human system. Intoxication of liver leads to accumulation of free radicals that eventually cause damage, fibrosis, cirrhosis and cancer. Carbon tetrachloride (CCl4) belongs to hepatotoxin is converted to a highly reactive free radical by cytochrome P450 enzymes that causes liver damage. Plant extracts derived quercetin has substantial role in hepatoprotection. This study highlights the possible mechanism by which quercetin plays significant role in hepatoprotection. HPLC analysis revealed the abundance of quercetin in the fruit extracts of Gynocardia odorata and Diospyros malabarica, were isolated, purified and subjected to liver function analysis on Wistar rats. Post quercetin treatment improved liver function parameters in the hepatotoxic Wistar rats by augmenting bilirubin content, SGOT and SGPT activity. Gene expression profile of quercetin treated rats revealed down regulation of HGF, TIMP1 and MMP2 expressed during CCl4 induction. In silico molecular mechanism prediction suggested that quercetin has a high affinity for cell signaling pathway proteins BCL-2, JAK2 and Cytochrome P450 Cyp2E1, which all play a significant role in CCl4 induced hepatotoxicity. In silico molecular docking and molecular dynamics simulation have shown that quercetin has a plausible affinity for major signaling proteins in liver. MMGBSA studies have revealed high binding of quercetin (ΔG) -41.48±11.02, -43.53±6.55 and -39.89±5.78 kcal/mol, with BCL-2, JAK2 and Cyp2E1, respectively which led to better stability of the quercetin bound protein complexes. Therefore, quercetin can act as potent inhibitor against CCl4 induced hepatic injury by regulating BCL-2, JAK2 and Cyp2E1.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Diospyros , Malpighiales , Animales , Tetracloruro de Carbono/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Diospyros/metabolismo , Frutas/metabolismo , Hígado/metabolismo , Malpighiales/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Quercetina/metabolismo , Quercetina/farmacología , Ratas , Ratas Wistar
8.
PLoS One ; 17(2): e0263853, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35213606

RESUMEN

The Semliki Forest Virus (SFV) is an RNA virus with a positive-strand that belongs to the Togaviridae family's Alphavirus genus. An epidemic was observed among French troops stationed in the Central African Republic, most likely caused by the SFV virus. The two transmembrane proteins El and E2 and the peripheral protein E3 make up the viral spike protein. The virus binds to the host cell and is internalized via endocytosis; endosome acidification causes the E1/E2 heterodimer to dissociate and the E1 subunits to trimerize. Lupenone was evaluated against the E1 spike protein of SFV in this study based on state-of-the-art cheminformatics approaches, including molecular docking, molecular dynamics simulation, and binding free energy calculation. The molecular docking study envisaged major interactions of Lupenone with binding cavity residues involved non-bonded van der Waal's and Pi-alkyl interactions. Molecular dynamic simulation of a time scale 200 ns corroborated interaction pattern with molecular docking studies between Lupenone and E1 spike protein. Nevertheless, Lupenone intearcation with the E1 spike protein conforming into a stable complex substantiated by free energy landscape (FEL), PCA analysis. Free energy decomposition of the binding cavity resdiues of E1 spike protein also ensured the efficient non-bonded van der Waal's interaction contributing most energy to interact with the Lupenone. Therefore, Lupenone interacted strongly at the active site conforming into higher structural stability throughout the dynamic evolution of the complex. Thus, this study perhaps comprehend the efficiency of Lupenone as lead molecule against SFV E1 spike protein for future therapeutic purpose.


Asunto(s)
Simulación del Acoplamiento Molecular , Virus de los Bosques Semliki/química , Triterpenos/química , Proteínas Virales de Fusión/química
9.
Polymers (Basel) ; 13(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34883617

RESUMEN

Brain cancers, mainly high-grade gliomas/glioblastoma, are characterized by uncontrolled proliferation and recurrence with an extremely poor prognosis. Despite various conventional treatment strategies, viz., resection, chemotherapy, and radiotherapy, the outcomes are still inefficient against glioblastoma. The blood-brain barrier is one of the major issues that affect the effective delivery of drugs to the brain for glioblastoma therapy. Various studies have been undergone in order to find novel therapeutic strategies for effective glioblastoma treatment. The advent of nanodiagnostics, i.e., imaging combined with therapies termed as nanotheranostics, can improve the therapeutic efficacy by determining the extent of tumour distribution prior to surgery as well as the response to a treatment regimen after surgery. Polymer nanoparticles gain tremendous attention due to their versatile nature for modification that allows precise targeting, diagnosis, and drug delivery to the brain with minimal adverse side effects. This review addresses the advancements of polymer nanoparticles in drug delivery, diagnosis, and therapy against brain cancer. The mechanisms of drug delivery to the brain of these systems and their future directions are also briefly discussed.

10.
Molecules ; 26(21)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34770796

RESUMEN

Gold nanoparticles (AuNPs) have been widely explored and are well-known for their medical applications. Chemical and physical synthesis methods are a way to make AuNPs. In any case, the hunt for other more ecologically friendly and cost-effective large-scale technologies, such as environmentally friendly biological processes known as green synthesis, has been gaining interest by worldwide researchers. The international focus on green nanotechnology research has resulted in various nanomaterials being used in environmentally and physiologically acceptable applications. Several advantages over conventional physical and chemical synthesis (simple, one-step approach to synthesize, cost-effectiveness, energy efficiency, and biocompatibility) have drawn scientists' attention to exploring the green synthesis of AuNPs by exploiting plants' secondary metabolites. Biogenic approaches, mainly the plant-based synthesis of metal nanoparticles, have been chosen as the ideal strategy due to their environmental and in vivo safety, as well as their ease of synthesis. In this review, we reviewed the use of green synthesized AuNPs in the treatment of cancer by utilizing phytochemicals found in plant extracts. This article reviews plant-based methods for producing AuNPs, characterization methods of synthesized AuNPs, and discusses their physiochemical properties. This study also discusses recent breakthroughs and achievements in using green synthesized AuNPs in cancer treatment and different mechanisms of action, such as reactive oxygen species (ROS), mediated mitochondrial dysfunction and caspase activation, leading to apoptosis, etc., for their anticancer and cytotoxic effects. Understanding the mechanisms underlying AuNPs therapeutic efficacy will aid in developing personalized medicines and treatments for cancer as a potential cancer therapeutic strategy.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Oro , Tecnología Química Verde , Nanopartículas del Metal , Extractos Vegetales/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Fenómenos Químicos , Diagnóstico por Imagen/métodos , Oro/química , Humanos , Nanopartículas del Metal/química , Sistema de Administración de Fármacos con Nanopartículas , Fitoquímicos/química , Extractos Vegetales/química , Nanomedicina Teranóstica/métodos
11.
Nanomaterials (Basel) ; 11(8)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34443829

RESUMEN

The green synthesis of silver nanoparticles (AgNPs) has currently been gaining wide applications in the medical field of nanomedicine. Green synthesis is one of the most effective procedures for the production of AgNPs. The Diospyros malabarica tree grown throughout India has been reported to have antioxidant and various therapeutic applications. In the context of this, we have investigated the fruit of Diospyros malabarica for the potential of forming AgNPs and analyzed its antibacterial and anticancer activity. We have developed a rapid, single-step, cost-effective and eco-friendly method for the synthesis of AgNPs using Diospyros malabarica aqueous fruit extract at room temperature. The AgNPs began to form just after the reaction was initiated. The formation and characterization of AgNPs were confirmed by UV-Vis spectrophotometry, XRD, FTIR, DLS, Zeta potential, FESEM, EDX, TEM and photoluminescence (PL) methods. The average size of AgNPs, in accordance with TEM results, was found to be 17.4 nm. The antibacterial activity of the silver nanoparticles against pathogenic microorganism strains of Staphylococcus aureus and Escherichia coli was confirmed by the well diffusion method and was found to inhibit the growth of the bacteria with an average zone of inhibition size of (8.4 ± 0.3 mm and 12.1 ± 0.5 mm) and (6.1 ± 0.7 mm and 13.1 ± 0.5 mm) at 500 and 1000 µg/mL concentrations of AgNPs, respectively. The anticancer effect of the AgNPs was confirmed by MTT assay using the U87-MG (human primary glioblastoma) cell line. The IC50 value was found to be 58.63 ± 5.74 µg/mL. The results showed that green synthesized AgNPs exhibited significant antimicrobial and anticancer potency. In addition, nitrophenols, which are regarded as priority pollutants by the United States Environmental Protection Agency (USEPA), can also be catalytically reduced to less toxic aminophenols by utilizing synthesized AgNPs. As a model reaction, AgNPs are employed as a catalyst in the reduction of 4-nitrophenol to 4-aminophenol, which is an intermediate for numerous analgesics and antipyretic drugs. Thus, the study is expected to help immensely in the pharmaceutical industries in developing antimicrobial drugs and/or as an anticancer drug, as well as in the cosmetic and food industries.

12.
Appl Biochem Biotechnol ; 193(10): 3371-3394, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34212286

RESUMEN

COVID-19 is a disease that puts most of the world on lockdown and the search for therapeutic drugs is still ongoing. Therefore, this study used in silico screening to identify natural bioactive compounds from fruits, herbaceous plants, and marine invertebrates that are able to inhibit protease activity in SARS-CoV-2 (PDB: 6LU7). We have used extensive screening strategies such as drug likeliness, antiviral activity value prediction, molecular docking, ADME, molecular dynamics (MD) simulation, and MM/GBSA. A total of 17 compounds were shortlisted using Lipinski's rule in which 5 compounds showed significant predicted antiviral activity values. Among these 5, only 2 compounds, Macrolactin A and Stachyflin, showed good binding energy of -9.22 and -8.00 kcal/mol, respectively, within the binding pocket of the Mpro catalytic residues (HIS 41 and CYS 145). These two compounds were further analyzed to determine their ADME properties. The ADME evaluation of these 2 compounds suggested that they could be effective in developing therapeutic drugs to be used in clinical trials. MD simulations showed that protein-ligand complexes of Macrolactin A and Stachyflin with the target receptor (6LU7) were stable for 100 nanoseconds. The MM/GBSA calculations of Mpro-Macrolactin A complex indicated higher binding free energy (-42.58 ± 6.35 kcal/mol). Dynamic cross-correlation matrix (DCCM) and principal component analysis (PCA) on the residual movement in the MD trajectories further confirmed the stability of Macrolactin A bound state with 6LU7. In conclusion, this study showed that marine natural compound Macrolactin A could be an effective therapeutic inhibitor against SARS-CoV-2 protease (6LU7). Additional in vitro and in vivo validations are strongly needed to determine the efficacy and therapeutic dose of Macrolactin A in biological systems.


Asunto(s)
Proteasas 3C de Coronavirus , Inhibidores de Cisteína Proteinasa/química , Macrólidos/química , Simulación del Acoplamiento Molecular , SARS-CoV-2/enzimología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Humanos
13.
Am J Pathol ; 191(7): 1255-1268, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33887214

RESUMEN

We postulate that similar to bacteria, adult stem cells may also exhibit an altruistic defense mechanism to protect their niche against external threat. Herein, we report mesenchymal stem cell (MSC)-based altruistic defense against a mouse model of coronavirus, murine hepatitis virus-1 (MHV-1) infection of lung. MHV-1 infection led to reprogramming of CD271+ MSCs in the lung to an enhanced stemness phenotype that exhibits altruistic behavior, as per previous work in human embryonic stem cells. The reprogrammed MSCs exhibited transient expansion for 2 weeks, followed by apoptosis and expression of stemness genes. The conditioned media of the reprogrammed MSCs exhibited direct antiviral activity in an in vitro model of MHV-1-induced toxicity to type II alveolar epithelial cells by increasing their survival/proliferation and decreasing viral load. Thus, the reprogrammed MSCs can be identified as altruistic stem cells (ASCs), which exert a unique altruistic defense against MHV-1. In a mouse model of MSC-mediated Mycobacterium tuberculosis (MTB) dormancy, MHV-1 infection in the lung exhibited 20-fold lower viral loads than the MTB-free control mice on the third week of viral infection, and exhibited six-fold increase of ASCs, thereby enhancing the altruistic defense. Notably, these ASCs exhibited intracellular replication of MTB, and their extracellular release. Animals showed tuberculosis reactivation, suggesting that dormant MTB may exploit ASCs for disease reactivation.


Asunto(s)
Pulmón/virología , Células Madre Mesenquimatosas/virología , SARS-CoV-2 , Tuberculosis/virología , Animales , Modelos Animales de Enfermedad , Ratones , Virus de la Hepatitis Murina
14.
Polymers (Basel) ; 13(8)2021 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-33919483

RESUMEN

Diosgenin encapsulated PCL-Pluronic nanoparticles (PCL-F68-D-NPs) were developed using the nanoprecipitation method to improve performance in brain cancer (glioblastoma) therapy. The nanoparticles were characterized by dynamic light scattering (DLS)/Zeta potential, Fourier-transform infrared (FTIR) spectra, X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), and Transmission electron microscopy (TEM). The encapsulation efficiency, loading efficiency, and yield were calculated. The in vitro release rate was determined, and the kinetic model of diosgenin release was plotted and ascertained. The cytotoxicity was checked by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide)assay against U87-MG cells (glioblastoma cell lines). The obtained nanoparticles demonstrated good size distribution, stability, morphology, chemical, and mechanical properties. The nanoparticles also possessed high encapsulation efficiency, loading efficiency, and yield. The release rate of Diosgenin was shown in a sustained manner. The in vitro cytotoxicity of PCL-F68-D-NPs showed higher toxicity against U87-MG cells than free Diosgenin.

15.
Front Pharmacol ; 12: 812565, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35356629

RESUMEN

The fact that viruses cause human cancer dates back to the early 1980s. By reprogramming cellular signaling pathways, viruses encoded protein that can regulate altered control of cell cycle events. Viruses can interact with a superfamily of membrane bound protein, receptor tyrosine kinase to modulate their activity in order to increase virus entrance into cells and promotion of viral replication within the host. Therefore, our study aimed at screening of inhibitors of tyrosine kinase using natural compounds from olive. Protein tyrosine kinase (PTK) is an important factor for cancer progression and can be linked to coronavirus. It is evident that over expression of Protein tyrosine kinase (PTK) enhance viral endocytosis and proliferation and the use of tyrosine kinase inhibitors reduced the period of infection period. Functional network studies were carried out using two major PTKs viz. Anaplastic lymphoma kinase (ALK) and B-lymphocytic kinase (BTK). They are associated with coronavirus in regulation of cell signaling proteins for cellular processes. We virtually screened for 161 library of natural compounds from olive found overexpressed in ALK and BTK in metastatic as well as virus host cells. We have employed both ligand and target-based approach for drug designing by high throughput screening using Multilinear regression model based QSAR and docking. The QSAR based virtual screening of 161 olive nutraceutical compounds has successfully identified certain new hit; Wedelosin, in which, the descriptor rsa (ratio of molecular surface area to the solvent accessible surface area) plays crucial role in deciding Wedelosin's inhibitory potency. The best-docked olive nutraceuticals further investigated for the stability and effectivity of the BTK and ALK during in 150 ns molecular dynamics and simulation. Post simulation analysis and binding energy estimation in MMGBSA further revealed the intensive potential of the olive nutraceuticals in PTK inhibition. This study is therefore expected to widen the use of nutraceuticals from olive in cancer as well as SARS-CoV2 alternative therapy.

16.
Protein Pept Lett ; 28(3): 323-332, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32914710

RESUMEN

BACKGROUND: Chickpea is a widely grown legume in India, Australia, Canada, and Mediterranean regions. Seeds of chickpea are good source of protein for both human and animals. Wild relatives of chickpea (Cicer arietinum) are the potential gene pool for crop improvement; however, very little information is available on the seed proteome of these wild chickpeas. OBJECTIVE: We aimed to analyze the seed proteome profiles of three wild relatives of chickpea, Cicer bijugum, Cicer judaicum and Cicer microphyllum along with two cultivated varieties JG11 and DCP 92/3. METHODS: Total seed proteins were extracted using various extraction buffers for 2-D gel electrophoresis. Protein separated in a 2-D gels were subjected to image analyses, differentially expressed proteins were extracted from the gels and identified by the MALDI TOF/TOF. Seed protease inhibitors were analysed biochemically. RESULTS: We have standardized the 2-D gel electrophoresis method and separated seed proteins using the modified method. We identified a large number (400) of protein proteins which were differentially expressed in cultivated and wild type species of chickpea. A comparative analysis between C. bijugum and JG 11 revealed the presence of 9 over-expressed and 22 under-expressed proteins, while the comparison between C. bijugum with DCP 92/3 showed 8 over-expressed and 18 under-- expressed proteins. Similarly, comparative analysis between C. microphyllum with DCP 92/3 showed 8 over-expressed proteins along with 22 under-expressed proteins, while the comparative study of C. microphyllum with JG11 displayed 9 over-expressed and 24 under-expressed proteins. We also compared C. judaicum with DCP 92/3 which revealed 15 overexpressed and 11 under-expressed proteins. On the other hand, the comparative analysis of C. judaicum with JG11 showed 10 over-expressed proteins, while the numbers of under-expressed proteins were 14. Among the differentially expressed protein proteins, 19 proteins were analyzed by the MS/MS, and peptides were identified using the MASCOT search engine. In the wild relatives the differentially expressed proteins are phosphatidylinositol 4-phosphate 5- kinase, ß-1-6 galactosyltransferase, RNA helicase, phenyl alanine ammonia lyase 2, flavone 3'-0-methyl transferase, Argonaute 2, Myb related protein, Tubulin beta-2 chain and others. The most important one was legumin having α- amylase inhibition activity which was up regulated in C. bijugum. We also studied the activity of protease inhibitor (trypsin and α- amylase inhibitors) in these seed lines which showed differential activity of protease inhibitors. The highest trypsin and α- amylase inhibition was observed in C. judaicum and C. bijugum, respectively. CONCLUSION: The differentially expressed proteins of wild relatives of chickpea appeared to be involved in various metabolic pathways. The study provides us information about the differences in the seed proteome of these wild species and cultivated varieties for the first time.


Asunto(s)
Cicer/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Semillas/metabolismo , India
17.
Cancer Res ; 79(16): 4015-4025, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31266772

RESUMEN

Cancer stem cells (CSC) maintain both undifferentiated self-renewing CSCs and differentiated, non-self-renewing non-CSCs through cellular division. However, molecular mechanisms that maintain self-renewal in CSCs versus non-CSCs are not yet clear. Here, we report that in a transgenic mouse model of MYC-induced T-cell leukemia, MYC, maintains self-renewal in Sca1+ CSCs versus Sca-1- non-CSCs. MYC preferentially bound to the promoter and activated hypoxia-inducible factor-2α (HIF2α) in Sca-1+ cells only. Furthermore, the reprogramming factors, Nanog and Sox2, facilitated MYC regulation of HIF2α in Sca-1+ versus Sca-1- cells. Reduced expression of HIF2α inhibited the self-renewal of Sca-1+ cells; this effect was blocked through suppression of ROS by N-acetyl cysteine or the knockdown of p53, Nanog, or Sox2. Similar results were seen in ABCG2+ CSCs versus ABCG2- non-CSCs from primary human T-cell lymphoma. Thus, MYC maintains self-renewal exclusively in CSCs by selectively binding to the promoter and activating the HIF2α stemness pathway. Identification of this stemness pathway as a unique CSC determinant may have significant therapeutic implications. SIGNIFICANCE: These findings show that the HIF2α stemness pathway maintains leukemic stem cells downstream of MYC in human and mouse T-cell leukemias. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/16/4015/F1.large.jpg.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteína Homeótica Nanog/metabolismo , Células Madre Neoplásicas/patología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Transcripción SOXB1/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Animales , Antígenos Ly/genética , Antígenos Ly/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones SCID , Ratones Transgénicos , Proteína Homeótica Nanog/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción SOXB1/genética , Ensayos Antitumor por Modelo de Xenoinjerto
18.
World J Microbiol Biotechnol ; 35(2): 34, 2019 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-30706219

RESUMEN

In this present study novel endoxylanase producing Bacillus licheniformis DM5 isolated, identified based on 16S rDNA from Garampani hotspring, Assam, India and enzyme was purified. RNA secondary structure predicted the similarity of B. licheniformis DM5 with B. licheniformis ATCC14580. Highest production of xylanase from B. licheniformis DM5 was achieved in the TY medium with cell densities 12 g/l and extracellular protein concentration containing xylanase 400 mg/l. Partially purified extracellular xylanase displayed optimum pH 6.5 and temperature 50 °C. Thermostability of the xylanase at the elevated temperature showed stability between 50 and 60 °C retaining its 99% activity. Kinetic parameters of thermophilic xylanase revealed Km 1.5 ± 0.2 mg/ml, Vmax 2.7 ± 0.2 U/ml and and Kcat 1.8 ± 0.2 s-1 against beechwood xylan but ruled out any exo-acting activity against synthetic pNP-xylopyranoside substrate. Time dependent enzymatic hydrolysis of beechwood xylan and preprocessed agrowaste corncob exhibited the release of xylotriose and xylobiose oligosaccharide (XOS) significantly high. Xylobiose and xylotriose exhibited higher binding affinities with BIAXP transporter protein of probiotic bacteria explaining their easy uptake by the cells. Mixed oligosaccharides also exhibited better prebiotic activity by promoting growth of Bifidobacterium infantis and Lactobacillus delbrueckii. Mixed XOS when tested for their cytotoxicity on Hela cell lines in in vitro MTT assay displayed significant lowering of cell viability after 48 h and 24 h at 100 µg/ml to 60% and 50%, respectively. In contrast, cytotoxicity wasn't observed against normal cervical cell line (VK2/E6E7-ATCC-CRL-2616). Therefore, thermophilic endoxylanase from B. licheniformis DM5 could be attributed for the production of prebiotic and anti-inflammatory XOS from agrowaste.


Asunto(s)
Bacillus licheniformis/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/metabolismo , Glucuronatos/metabolismo , Oligosacáridos/metabolismo , Bacillus licheniformis/química , Bacillus licheniformis/genética , Bacillus licheniformis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Secuencia de Bases , Endo-1,4-beta Xilanasas/genética , Endo-1,4-beta Xilanasas/aislamiento & purificación , Estabilidad de Enzimas , Glucuronatos/química , Calor , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Datos de Secuencia Molecular , Oligosacáridos/química , Filogenia , Xilanos/química , Xilanos/metabolismo
19.
Bioresour Technol ; 278: 372-382, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30709766

RESUMEN

In today's scenario of global climate change, there is a colossal demand for sustainable industrial processes and enzymes from thermophiles. Plausibly, thermozymes are an important toolkit, as they are known to be polyextremophilic in nature. Small genome size and diverse molecular conformational modifications have been implicated in devising adaptive strategies. Besides, the utilization of chemical technology and gene editing attributions according to mechanical necessities are the additional key factor for efficacious bioprocess development. Microbial thermozymes have been extensively used in waste management, biofuel, food, paper, detergent, medicinal and pharmaceutical industries. To understand the strength of enzymes at higher temperatures different models utilize X-ray structures of thermostable proteins, machine learning calculations, neural networks, but unified adaptive measures are yet to be totally comprehended. The present review provides a recent updates on thermozymes and various interdisciplinary applications including the aspects of thermophiles bioengineering utilizing synthetic biology and gene editing tools.


Asunto(s)
Biotecnología , Biocombustibles , Edición Génica , Calor
20.
Asian Pac J Cancer Prev ; 19(9): 2561-2568, 2018 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-30256056

RESUMEN

Background/objective: HCC is a multistep process starting from chronic hepatitis that progress through cirrhosis to HCC. MicroRNA expression level was found to be deregulated in HCC. To find out whether the expression level of miR-34a and miR-183 was deregulated in HCC compared to controls without HCC. Methods: Real time quantitative PCR was done to find out the miRNA expression level in terms of Ct value followed by statistical analysis. Results: Over-expression of miR-183 and under-expression of miR-34a in HCC was detected. All changes in expression level of miR-34a and miR-183 were found to be due to HCC compared to controls without HCC. So both miR-34a and miR-183 were suitable to differentiate HCC from Cirrhosis and chronic hepatitis with an efficient diagnostic power of sensitivity, specificity and expression level. But they might not have any role in patients' survival. Conclusion: miR- 34a and miR-183 might be considered as potential markers of HCC screening molecule in addition to other approved panel of marker. Our study warrants further expression level study.


Asunto(s)
Biomarcadores de Tumor/sangre , Carcinoma Hepatocelular/sangre , Neoplasias Hepáticas/sangre , MicroARNs/sangre , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Estudios de Casos y Controles , Femenino , Estudios de Seguimiento , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Masculino , MicroARNs/genética , Persona de Mediana Edad , Pronóstico , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...